Show simple item record

dc.contributor.authorNunes, Silvia P.
dc.contributor.authorArbañil, José D. V.
dc.contributor.authorMalheiro, Manuel
dc.date.accessioned2021-11-18T06:42:51Z
dc.date.available2021-11-18T06:42:51Z
dc.date.issued2021-09-09
dc.identifier.citationNunez, A. P., Arbañil, J. D., & Malheiro, M. (2021). The structure and stability of massive hot white dwarfs. The Astrophysical Journal, 921(138). https://doi.org/10.3847/1538-4357/ac1e8aes_PE
dc.identifier.urihttps://hdl.handle.net/11537/28468
dc.descriptionEl texto completo de este trabajo no está disponible en el Repositorio Académico UPN por restricciones de la casa editorial donde ha sido publicado.es_PE
dc.description.abstractABSTRACT We investigate the structure and stability against radial oscillations, pycnonuclear reactions, and inverse β-decay of hot white dwarfs. We consider the fluid matter to be made up of nucleons and electrons confined in a Wigner–Seitz cell surrounded by free photons. It is considered that the temperature depends on the mass density considering the presence of an isothermal core. We find that the temperature produces remarkable effects on the equilibrium and radial stability of white dwarfs. The stable equilibrium configuration results are compared with those for white dwarfs estimated from the Extreme Ultraviolet Explorer survey and the Sloan Digital Sky Survey. We derive masses, radii, and central temperatures for the most massive white dwarfs according to the surface gravity and effective temperature reported by the surveys. We note that these massive stars are in the mass region where general relativity effects are important. These stars are near the threshold of instabilities due to radial oscillations, pycnonuclear reactions, and inverse β-decay. Regarding the radial stability of these stars as a function of the temperature, we find that it decreases with the increment of central temperature. We also find that the maximum-mass point and the zero eigenfrequencies of the fundamental mode are determined at the same central energy density. Regarding low-temperature stars, pycnonuclear reactions occur in similar central energy densities, and the central energy density threshold for inverse β-decay is not modified. For Tc ≥ 1.0 × 108 [K], the onset of radial instability is attained before pycnonuclear reaction and inverse β-decay.es_PE
dc.formatapplication/pdfes_PE
dc.language.isoenges_PE
dc.publisherIOP Publishinges_PE
dc.rightsinfo:eu-repo/semantics/closedAccesses_PE
dc.sourceUniversidad Privada del Nortees_PE
dc.sourceRepositorio Institucional - UPNes_PE
dc.subjectEstrellases_PE
dc.subjectEstabilidades_PE
dc.subjectCalores_PE
dc.titleThe structure and stability of massive hot white dwarfses_PE
dc.typeinfo:eu-repo/semantics/articlees_PE
dc.publisher.countryGBes_PE
dc.identifier.journalThe Astrophysical Journales_PE
dc.description.peer-reviewRevisión por pareses_PE
dc.subject.ocdehttps://purl.org/pe-repo/ocde/ford#2.07.00es_PE
dc.description.sedeSan Juan de Luriganchoes_PE
dc.identifier.doihttps://doi.org/10.3847/1538-4357/ac1e8a


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record